Protecting wireless computer networks by using intrusion detection agents

Dragan Pleskonjic

CEO & Security Architect at BEG Finsoft
Member of IEEE Computer Society, ACM and ACM SIGSAC
E-mails:
dragan@convex.org | dragan@computer.org | dragan@finsoft.com
Introduction

• Wireless networks are forecasted to expand rapidly in coming years
• Wi-Fi networks defined by IEEE 802.11 standard family (IEEE 802.11a/b/g…) and also mobile networks
Some details and characteristics

- Covers an area i.e. not limited by wire connectivity
- Intruder can stay in covered area and access to network unseen
- Insider and outsider attacks definition used for wired networks should be redefined for wireless networks.
- There is no exact border between internal and external network, i.e. there is no clear perimeter security
The problem

• Intrusion Threats and Attacks on 802.11 networks

• WLANs vulnerable on usual wired network threats plus some additional
Some wireless specific threats, attacks and vulnerabilities

- Easy access to 802.11 networks
- Unauthorized ("rogue") access points
- Unauthorized use of service
- Denial-of-service vulnerability
- MAC spoofing and session hijacking
- Relatively easy traffic analysis and eavesdropping
Wireless network are usually targeted with various kinds of threats

- Attacks designed to steal the association and login credentials
- War Driving - Probe requests which don't have the ESSID field set in the probe
- Flooding - attempts to flood the AP with associations
- MAC address spoofing
- Monkey / Hacker jacks
- Null probes
- Null associations
- Floods etc.
Intrusion Detection

- Defined as problem in the early 1980s
- Anderson defines an intrusion as any unauthorized attempt to access, manipulate, modify, or destroy information, or to render a system unreliable or unusable.
- Intrusion detection attempts to detect these types of activities.
- We are going to establish foundations of intrusion detection techniques in order to determine where they are strong and where they need improvement.
- **With wireless networks intrusion detection system (IDS) should be carefully redefined**
Existing solutions and their problems

- By detection model i.e. what is detected
 - Misuse detection i.e. signature based approaches
 - Anomaly detection
- By scope of protection (or by deployment) i.e. where detected
 - Network Based
 - Host Based
 - Application Based
- When attack is detected
 - Real time
 - After the fact
By detection model i.e. what is detected

- Misuse detection i.e. signature based approaches
- Anomaly detection
Misuse detection system

- Intrusion patterns database
- Pattern matching module (match?)
- Stop or alert
- Activity monitoring
- Yes
- No
- Pass
Anomaly detection system

Learning data

Pattern recognition module

Activity data

Intrusion

Stop or alert

No intrusion

Pass
By scope of protection (by deployment) i.e. where detected

- Network Based
- Host Based
- Application Based
When attack is detected

- Real time
- After the fact
Intrusion detection in wireless networks

• Inherent lack of security and experience
• WEP was broken pretty quickly
• Wired – physically attached: intruder / attacker needs to plug directly into the network
• Wireless – intruder can stay anywhere and intrude unseen
• No exact “border” between internal and external network => losing exact classification to insider and outsider attacks
The new idea and solution

- Multilevel and multidimensional architecture
- To make an efficient system to defend the wireless network
- Define attack and intrusion “axioms scope”
- Define conclusions mechanisms (“theorems”)
- Self learning system and anticipation – even if we fail to make a fully intelligent system we can accept some weaker decision points to get the system functional
- Implement attack recognition
- Launch response to defend system or network
Taken approach

• Neural networks and fuzzy logic
• Self learning system (AI - artificial intelligence, neural networks, fuzzy logic…)
• Automatic answer to intrusions
• Defend against new intrusion types (previously unknown or similar but different)
• Local and global answer on attack (intrusion)
• Wireless specific attacks detection
Approach... – continued

- Recognize more attacks
- Autonomy and cooperation of components
- Multidimensional system
- Level of autonomous decision and self defense
- Resistance and denial of new kinds of intrusions
- Providing two kinds of response: Local and global
- Elements of intelligent behavior etc.
Proposed new system (WIDS)

- WIDS Agent
- WIDS Sensor
- WIDS Server
- WIDS Console & Management, Reporting Tools
Relation to other network and security tools and utilities

- Firewalls
- Network Management & Monitoring Tools
- Wireless Intrusion Detection Systems (WIDS)
- Antivirus and other malicious software protection
- Other security tools and utilities
Example of decision scale

[0-A] is for deny access
[A-B] requires human or artificial intelligence intervention
[B-1] is for allow access
A and B are movable, A ≤ B

<table>
<thead>
<tr>
<th>Intrusion</th>
<th>Grey area</th>
<th>Regular access</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>
Conceptual model for a WIDS
Agents in ad-hoc network [14]

WIDS Agent

- Local Response
- Global Response

- Local detection engine
- Cooperative detection engine

- Local data collection
- Secure communication

System calls, communication and other traces and logs

Neighboring WIDS agents, sensors and servers
Achieved results

- This methodology and system is currently under development. Work on developing methodology is done and some steps are completed:
 - Elements for multidimensional and multilevel concept and axioms scope, with defining “theorems” for decision and self learning scope.
 - Partially developed components and elements of system
 - Product family definition and implementation
Achieved results... continued

- Further work to be done:
- To define remaining part of system
- To make proof of concept implementation
- To test single components and system overall
- To gain understanding of the need and solution
- Example: WIDS Agent as part of Operating System (as personal firewall or antivirus tool is at present time)
- Additional work toward intrusion prevention and response
Next product lines / future development

• **WIPS** - Wireless Intrusion Prevention System
• **MIDS** - Mobile Intrusion Detection System
• **MIPS** - Mobile Intrusion Prevention System
• Bayesian probability and statistical theory
• Modal logic
Conclusions

• Wireless networks are growing very fast, but they are still vulnerable to different kind of attacks.
• This paper presents kind of new approach with usage wireless intrusion detection systems (WIDS) of components: agent, sensor, server and additional management and reporting tool.
• WIDS, as presented in this paper, is multilevel and multidimensional system and will include these components with built in neural network and / or fuzzy logic technology.
• This gives capabilities of autonomy, self-learning and decision about response against attacker.
• System is under development and some of parts are in early stage. There is further work to be done in order to achieve this goal.
Questions?

• Thank you for your patience

• Questions?
Additional info

• My security blog:
 http://www.conwex.info/blog/

• About me:
 http://www.conwex.info/Dragan_Pleskonjic.html